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Tethered membranes with periodic boundary conditions are studied using constant temperature-
pressure molecular dynamics techniques. Constraint and Nosé thermostating are used in conjunction
with Andersen and Cleveland-Wentzcovitch constant pressure algorithms. In contrast to earlier work,
it is found that the scaling behavior is consistent with the most accurate previous simulation studies
(of tethered vesicles). The Poisson ratio for these networks is determined to be op = —0.15 £ 0.01.
The relative efficiency of the various algorithms is also discussed.
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I. INTRODUCTION

Tethered or solidlike membranes have been extensively
studied recently [1], and we now have a rather complete
picture of their thermal properties. Unlike linear poly-
mers, two-dimensional tethered networks are known to
exhibit a flat phase with broken orientational symmetry.
Out-of-plane thermal undulations that induce a nonzero
local Gaussian curvature are strongly suppressed because
they are accompanied by in-plane shear deformations.
As a result, even “phantom”-—self-intersecting— teth-
ered membranes should be flat at low temperatures. Ex-
cluded volume interactions appear to stabilize the flat
phase at all temperatures.

There are several experimental realizations of solid
membranes. These include metal dichalcogenide layers
[2], polymerized adsorbed monolayers [3], mammalian
red blood cell cytoskeletons [4], two-dimensional poly-
mers of chiral precursors [5], and suspended layers of
graphitic oxide in aqueous solution [6, 7]. A major
difficulty is finding elastic networks of appropriate size
with a sufficiently small width to thickness aspect ratio.
The best studied systems are two-dimensional sheets of
graphite oxide suspended in aqueous solution, since mi-
cron size sheets with a thickness on the order of 10 A
can be formed by exfoliating carbon with a strong oxi-
dizing agent. Whereas the original light scattering exper-
iments on suspended membranes of graphite oxide were
consistent with a fractal dimension of 2.5 [6], suggesting a
crumpled phase, subsequent freeze-fracture electron mi-
croscopy and static light scattering experiments indicate
that they are in reality flat [7].

This flat phase is characterized by anomalous elas-
tic behavior, with wave-vector-dependent in-plane elas-
tic constants Agr(q) ~ pr(g) ~ ¢*~™ and renormal-
ized bending rigidity xr(q) ~ ¢~" [8]. For a flat crys-
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talline network, the rms amplitude of the out-of-plane
fluctuations, 4/(z2%), is related to the in-plane length
scale, L, by /(22) ~ L¢, with ¢ = 1 — 5/2. There is
as yet no clear consensus concerning the precise value
of the exponent (. Early simulations performed using
bead-spring models with free edge boundary conditions
yielded the estimate ( = 0.64 + 0.04. However, Abra-
ham [9] pointed out that this value for ¢ may be too
large due to edge fluctuations. To eliminate edge effect,
Abraham simulated a tensionless network with periodic
boundary conditions, and obtained a roughness exponent
¢ =~ 0.53. The best theoretical estimate, ( =~ 0.59, was
obtained by Le Doussal and Radzhihovsky [10] using a
self-consistent screening approximation.The results of re-
cent simulations of tethered vesicles [11, 12] are in good
agreement with this result. Another, currently untested,
prediction of [10] is that the two-dimensional Poisson ra-
tio op = A(g = 0)/[A(g = 0) + 2u(g = 0)] of these net-
works is a universal number, equal to —1/3.

The purpose of this paper is to help resolve these con-
flicting results and determine the Poisson ratio op. We
have performed constant temperature-pressure molecular
dynamics (MD) simulations of tensionless tethered mem-
branes with periodic boundary conditions using three dif-
ferent algorithms that can be proven to generate con-
figurations belonging to the isothermal-isobaric ensem-
ble. We find a roughness exponent { =~ 0.59, in ex-
cellent agreement with the results of both the self-
consistent screening approximation and simulations of
tethered vesicles [11, 12]. The in-plane elastic constants
are determined, and it is shown that the Poisson ratio
op = —0.15 £ 0.01. These results indicate that the self-
consistent screening approximation yields extremely ac-
curate results for the scaling exponents, but that the
predicted Poisson ratio is probably too negative. The
relative efficiency of various algorithms for performing
isothermal-isobaric simulations are also discussed in this
paper.
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II. SIMULATION METHODS AND MODEL

There has been considerable progress in extending MD
methods to simulate ensembles other than the traditional
microcanonical ensemble. In this regard, Andersen’s in-
troduction of the constant pressure MD method repre-
sented a significant breakthrough [13]. In this method,
the volume becomes a dynamical variable and is allowed
to fluctuate. The average volume is determined by the
balance between the internal pressure and the exter-
nally set pressure p. The enthalpy of the systems is
approximately conserved so that his method generates
the constant enthalpy, constant pressure (H,p,N) en-
semble. The procedure guarantees that the averages of
static quantities are equal to those in the isoenthalpic-
isobaric ensemble. Subsequently, Nosé [14] introduced
an analogous procedure for performing MD simulations
at constant temperature. In this method, an additional
degree of freedom, s, is introduced in order to allow the
total energy of the system to fluctuate. A special choice
of the potential for the variable s guarantees that the
averages of static quantities generated are equal to those
in the canonical ensemble. The thermostating procedure
originally proposed by Hoover et al. [15,16] and Evans
[17] (which we call constraint thermostating) can be de-
rived from this method by imposing an additional con-
straint. Either of these methods is easily combined to
allow MD simulation in the isothermal-isobaric ensem-
ble.

Subsequently, several generalizations of Andersen’s
method have been introduced which allow both the size
and shape of the MD cell to fluctuate. In this paper, we
employ the Lagrangians suggested in Refs. [18] and [19].
In contrast to the method first suggested by Parrinello
and Rahman [20], the Lagrangian we employ is invariant
with respect to the choice of the simulation cell basis vec-
tors and reduces to Andersen’s Lagrangian in the limit
of isoshape fluctuations.

The networks we consider consist of N = L x L parti-
cles of mass m tethered in a triangular array. The parti-
cles interact through the shifted and truncated Lennard-
Jones potential

_JAe(2)12—(2)8+ %] forr < 21/64
ULy = {O for r > 21/6¢, (1)

This purely repulsive potential represents the excluded
volume interactions. We take Uy only between nearest-
and next-nearest neighbors; this simplifies the calculation
considerably while still ensuring that the network does
not self-intersect [21]. There is an additional finitely ex-
tensible nonlinear elastic (FENE) potential between teth-
ered (nearest-neighbor) particles of the form

_ J —0.5kRy?1n[1 — (r/Ry)?] for r < Ry
Urene = { 0o for r > Rg.
)

We take k = 6¢/0? and Ry = 1.50. In the following,
length, mass, and energy are given in units of o, m, and
€, respectively. Our unit of time is 7 = a(m/e€)/2.
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We have performed isothermal MD simulations of
tensionless (spreading pressure p = 0) tethered mem-
branes with periodic boundary conditions using three
methods: (1) Constraint thermostating with Andersen’s
constant-pressure algorithm (CA), (2) Nosé thermostat-
ing with Andersen’s constant-pressure algorithm (NA).
and (3) Nosé thermostating with Cleveland-Wentzcovitch
constant-pressure algorithm (NCW). In methods (1) and
(2), the shape of the simulation cell is fixed, and the
lengths of the two basis vectors spanning the cell are
equal. In this case, only the area A of the simulation
cell fluctuates. In method (3), both the size and shape of
the cell are allowed to fluctuate, and the dynamics of the
simulation cell is described by an equation of motion for
the matrix h of cell basis vectors. In all cases, the simu-
lations are performed at zero spreading pressure, p = 0,
and constant temperature, kT = €.

A. Constraint-Andersen (CA) algorithm

In the two-dimensional version of Andersen’s constant-
pressure molecular dynamics method, we decompose the
coordinate vectors {r;} of the particles into their in-plane
components p and out-of-plane components 2z, so that
r; = (p;,2). The coordinates p;, ¢ = 1,...,N of the
particles are then replaced by scaled coordinate vectors

s; defined by [13]
S; = pi/Al/zs (3)

where A is the (projected) area of the network. The
Lagrangian of the system is

N
L:A:—;—m;[/i S; S,+z12]

N Q .
=30 i) + 5 A% - pa,

i=1 j>i

where Q4 is a “mass” for the area motion and ¢ is the in-
terparticle potential. @4 determines the relaxation time
for an imbalance between the external pressure and the
internal stress. We have chosen Q4 to make this relax-
ation time on the order of L/c, where L is the MD cell
size and c is the sound velocity. The exact choice of Q 4
is not critical, however, and in fact, the equilibrium prop-
erties of the system are independent of the choice of Q4.
The Euler-Lagrange equations of motion are

§,’ = -——% Z ﬂg@sﬁ bt SlA/A, (43.)
7
3= —% z @j—)zip (4b)
igj
and
A= (P,—p)/Qa, (4¢)

where P, is the virial pressure



1424 Z. ZHANG, H. T. DAVIS, AND D. M. KROLL 53

1 s ¢'(ri;
=L m;vi.vi~zz Tl ®

=1 7>

with v; = AY/2s,. Expressed in terms of the momentum
p: = m{v;, 2}, Egs. (4a) and (4b) are

Z (»b (7'1.1) _ -;—p,;A/A (63.)

i#]

for the £ and y components, and
- -y ey, (6b)

for the z component. In order to simulate at constant
temperature T', we have implemented the damped force,
or constraint, method described in Refs. [15-17,22]. In
this method, damping terms —(p;/m are added to the
right-hand side (rhs) of Eqs. (6a) and (6b), and ( is
determined from the condition that the time derivative
of the temperature,

N
1
= —— i Pi, 7
T 3(N_1)k3i§=1p P (7

is zero. This implies that

N
(=Y p |- i,
=1

i£]

N
Zpi * P
(8)

The factor N — 1 instead of N occurs in Eq. (7) since
three degrees of freedom have been removed by the con-
straint of zero total linear momentum. These equa-
tions of motion were integrated using the leap-frog ver-
sion of the Verlet algorithm as implemented in [22] us-
ing @4 = 0.1 and a time step of 0.0087. System sizes
N = 100, 196, 400, 784, and 1600 were studied. After
equilibration, averages were taken over at least 20 million
timesteps.

B. Nosé-Andersen (NA) algorithm
Nosé thermostating requires the introduction of a new

degree of freedom, s, and a virtual, or scaled, time vari-
able t. t is related to the real, or actual, time ¢’ by

¢ = / Cdt/s, )

so that dt’ = dt/s. The dynamics of the system are
described by the effective Lagrangian

N
1 .2 52 . . .2
Ly = ist — gkpT In(s) + zm E [A s;-8; + 2]

- sz’(rn) +

i=1 7>z

A2 — pA, (10)

where Q4 and Q; are “masses” controlling the dynamics

of A and s, respectively. gkgT In(s) is a potential energy
associated with the variable s; g is related to the number
of degrees of freedom of the system, kp is Boltzmann’s
constant, and T is the externally set value of the tem-
perature. The logarithmic dependence of this potential
on s is essential for producing the canonical ensemble
[12, 14, 23]. The most efficient choice for @, is one that
makes the characteristic time scale for s to be on the
order of the time it takes for a sound wave to travel the
nearest-neighbor distance [23]. Because we sample in vir-
tual time and we fix the center-of-mass momenta to be
zero, g = 3N — 2 [23].
The Euler-Lagrange equations of motion are

. ¢ (7'1,7
8§ = sz Z v —$;,A/A —258;/s, (1la)
i#j
. ¢’ (ru
Z; = m32 Z —28z;/s, (11b)
i#]
N
§=|ms®> {As;-8 + 27} — gkpT /(Q,s),
=1
(11c)
and
A= (P, -p)/Qa, (11d)
where P; is the virial pressure
N
_ 1 2 ¢ (7'11
N ST 3 i
=1 =1 j>1
(12)

where v; = A'/23;, and dots represent derivatives with
respect to the virtual time t. Expressed in terms of the
physical coordinates p;, Eq. (11a) becomes

d) (T'LJ sp,
m32 Z 7 27
i#J

.- . 2 .
pi |A_1(A As
t3 |4 2(A) MR (13)

In the NA procedure, the dynamics is described by Eqgs.
(11b)—(11d) and (13).

Since first-order time derivatives appear on the rhs
of the equations of motion, we have used a third-order
predictor-corrector algorithm to integrate these equa-
tions. Very small integration time steps At in the range
0.0017-0.0027 were used, with smaller values of At for
larger system sizes. Even then, we found it necessary to
iterate the corrector step in order to prevent a drift in
the variable s(t). We utilized the following procedure:
the forces due to interparticle interactions are calculated
once using the predicted value of the coordinates. These
forces, together with other predicted values, are then
used to get corrected values for coordinates and their
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time derivatives. This procedure is iterated four times,
using the interparticle forces calculated after the first pre-
dictor step. This procedure is significantly faster than
a full corrector iteration because the interparticle forces
are calculated only once per time step. We have found
that this procedure removes the drift in the variable s(t)
and significantly increases the accuracy of this integra-
tion scheme. Simulations were performed using Q4 and
Q5 in the ranges 0.1 — 0.35 and 5 — 14, respectively. Sys-
tem sizes N = 100, 196, 400, and 784 were studied, and
averages were taken over at least 40 million time steps.

C. Nosé-Cleveland-Wentzcovitch (NCW) algorithm

In this case, both the size and the shape of the simu-
lation cell are allowed to fluctuate. The simulation cell
configuration is described by the matrix h of the two
vectors a and b that span the edges of the cell. If h is
defined to be the matrix with columns a and b, the area
of the MD cell is A = det{h}. The position of a particle
in the cell is

pi = hs; = {;a+ n;b, (14)
with 0 < &;,n; < 1 and the square of the distance between
particles i and j is r% = pZ + 2%, where

p3; = s;;Gsij , (15)

with the metric tensor G = hTh. When Nosé ther-
mostating is combined with Cleveland and Wentzcovitch
constant pressure methods, the Lagrangian is

1 ms? N
_ 2 Tee. o 32
Ly = -2—Q,s gksT In(s) + 5 iE_l[si Gs; + 2]

- Q
=20 D " blrig) + 5 Te(ho”

i=1 j7>1

ohT) —pA, (16)

and the equations of motion are

§,; = Z d) r”) - Gwlc‘;éi - 26"5,;/3, (17&)
i#j
3 = 32 Z ¢ (TIJ) — 282;/s, (17b)
A
N
§= |ms? Z[g;f’(;s,- + 22] — gkpT /(st), (17¢)
i=1
and
L1 A 1 e
h= chA(H pl)h + {~Zzh+ 7 Tr(hfh")h
+hh~'h + 1 (RfRT al'lT}}o-T)h}, (174)

where o = A(hT)~!, f = 070, and I is the stress tensor

i=1

H__ms2 N 1 N (r,,) 18
= PiP; —Z;g i PijpP 1]» (18)

with p; = hs;. The equation of motion in Cartesian

space is

. 7'1
=hh"lp, - — msz Yo = #(ris) pij + [ {ho™
£y T4

—ohT} — 22} [pi ~ %ﬁani] : (19)

The equations of motion (17b)—(17d) and (19) were
integrated using the third-order predictor-corrector
method described in Sec. IIB. Time steps At in the
range 0.0017 — 0.0027 were used. g = 3N — 2, and values
for Q4 and Q, were chosen in the ranges 0.3 — 1 and
5 — 14, respectively. System sizes N = 100, 196, 400,
and 784 were simulated, and averages were taken over at
least 100 million time steps.

III. ELASTIC PROPERTIES

The elastic compliance tensor

A
S S 3 Sinbit + 6.6 20
Sijkt PSR K+ ( k051 + 6:105k) (20)
is related to the thermally induced strain correlations by
Ale;jem) = kBT Sijni, (21)

where A is the (projected) area of the network. The
strain tensor is given by [20]

e= (M) G h - 1], (22)

where 1 is the unit matrix and the matrix of reference
basis vectors hg is determined by the requirement (€) =
0. Using (20) and (21), one finds that

kT A

(€11€22) = —*<A—>4—“—“‘——H()‘ ) (23a)
kT 1
(€12€12) = ‘CZ)—@ ) (23b)
and
(€11€11) = (€22€22) = kT A+ 24 (23c)

A O +p)

where (A) = det{ho}. Note that these three strain cor-
relation functions are not independent, but fulfill the re-
lation

(e11€11) — (€11€22) = 2(€12€12). (24)

Finally, to leading order in €, the area susceptibility,

K, =[(A%) — (A)?]/(A), is given by
Ka/{4)=([Tr ]*), (25)
so that
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_ kaT
AT+

(26)

The two-dimensional Poisson ratio op = A/(A + 2p) can
be expressed in terms of ratios of these strain correlation
functions. We have used the following ratios to estimate
op:

01(3) = —(e11€22)/(€11€11) , (27a)

O'g) = -1 + 2(612612)/(611611> N (27b)
and

o) =1 - Ka/[2(A)(er1€11)] - (27¢)

Since (27b) is equivalent to (27a) because of (24), the dif-
ference between ag) and ag) is a measure of the statis-
tical accuracy of our data. Since we have calculated K 4
using A = det{h}, our result for the area compressibility
contains contributions from higher-order strain correla-

tion functions, and is therefore not equivalent to expres-

sion (25). The difference between ag) and the other two
estimates for the Poisson ratio is a measure of the size of
these higher-order contributions.

In order to determine the strain correlation functions,
it is convenient to express the elements of the strain ten-
sor in terms of the basis vectors {a,b} of the MD cell.
Choosing the z axis to coincide with the direction of a,
one finds

€11 = (az/cz -1/2, (28a)

€12 = €21 = &- g/(2c2) s (28b)
and

ez = (g°/c* ~1)/2, (28¢)

where g = (2b—a)/+/3. The equilibrium length, ¢, of the
cell edge is defined by the thermal averages c? = (a2) =
(b?) = (g?), and the angle between the mean directions
of the two basis vectors is 7/3. Since the shape of the
simulation cell is fixed in both the CA and NA methods,

€11 = €22 = (32/02 —1)/2

and

(29a)

€12 = €21 = 0 (29b)

in this case.

Equations (23) and (25) can be used to determine the
scale dependent elastic constants pg(L) and Ag(L). For
both the CA and NA algorithms, the constraint of fixed
cell shape implies that op = —1.

IV. RESULTS

Our results for the average out-of-plane displacement
squared, (22) = (N, (zi — 2.)?)/N, where z, is the z
component of the center-of-mass coordinate of the con-
figuration, are plotted as a function of system size IV
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in Fig. 1. Data from the constraint-Andersen, Nosé-
Andersen, and Nosé-Cleveland-Wentzcovitch algorithms
are indicated by circles (o), pluses (+), and squares (O),
respectively. The data obtained using the CA and NA
methods are in excellent agreement, and, as expected, the
amplitude of the out-of-plane fluctuations is larger when
the shape of the simulation cell is allowed to fluctuate.
We find a scaling exponent ¢ = 0.59 for the data obtained
using the CA and NA algorithms, and ¢ =~ 0.58 for the
NCW algorithm. These results are in excellent agreement
with previous simulation studies of tethered vesicles [11,
12], as well as the prediction of the self-consistent screen-
ing approximation [10].

Our data for the area susceptibility, K4 = [(42) —
(A)2]/(A), is plotted in Fig. 2. For the CA method (o),
our data for the four smaller system sizes (N = 100,
196, 400, and 784) scales rather well with an exponent
w = 0.35. This value for w is much larger than would
be obtained using the scaling relation w = 2¢ — 1 with
¢ = 0.59. Note, however, that the data point for the
largest system studied (N = 1600) lies well below the
value extrapolated from the data for the smaller system
sizes, indicating that there is probably a slow crossover
to a smaller value of w for larger systems. Our data
for K4 (not shown) obtained using the NA algorithm
are also consistent with those obtained using the CA
method. However, the statistical errors are significantly
larger; the disadvantage of the NA algorithm is that very
small time steps are required in order to conserve the
effective Hamiltonian and prevent a slow drift in s(¢).
Much longer runs are therefore needed to obtain statisti-
cally significant results. While this is not a problem for
strongly divergent quantities such as (22), an accurate de-
termination of the area susceptibility requires excessively
long simulation runs.

10° - T T —————r -
/' )
L o ]
L ’ J
o
L L1 7 N
.'. /
)
L v 4
=7
/7
“n L ﬁ; |
\% ,
@,
=
0 7
7/
P
10t L Lol n L
10? 10° 10*
System Size N
FIG. 1. (2%) as a function of system size N (= L?) ob-

tained using the CA (o), NA (+), and NCW (0O) algorithms.
The dashed line has a slope of 0.59. The dotted line has a
slope of 0.58.
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FIG. 2. Area susceptibility as a function of system size N

obtained using the CA (o) and NCW (O) algorithms. The
dashed line has a slope of 0.35. The dotted line has a slope
of 0.22.

Results for K4 obtained using the NCW algorithm
(O0), with A = det{h}, are in much better agreement
with the expected scaling behavior. Indeed, the data for
K 4 scale with an exponent w = 0.22; this is consistent
with ¢ = 0.61, which is in quite good agreement with
the value obtained from our data for (22). Allowing the
shape of the simulation cell to fluctuate therefore leads
to a significant improvement over the Andersen method.
From Fig. 2, it can be seen that systems sizes larger
than N = 1600 are probably needed before there is a
crossover to the correct scaling behavior when the shape
of the simulation cell is kept fixed.

Figure 3 contains our results for the various strain cor-
relation functions obtained using the NCW algorithm. It

107! [ . -
q _ _ —_
g @---"—" PR S
g s - :
LE _ B ......

........... B

g .............. E] ........
g B
S 1072 F t
& r :
h i -
[}
: ; .
g //
m J
S
R
wn

T
i

1 0—3 1 ! s 1 L L
10? 10°
System Size N

FIG. 3. Strain tensor correlation functions (A)(ei1€11)
(0), (A)(e2z€22) (+), (A)(e1z€12) (O), and (A){e11€22) (A) asa
function of system size N. The dashed and dotted lines both
have the slope 0.22.

can be seen that our data for (€13€11)(A) (o), (€22€22)(A)
(+), and (e12€12)(A4) (O) all scale with the same expo-
nent, namely w = 0.22. Fits to these data yield

o’ur(L)/e ~ 56/L%** (30a)

and

0*Ar(L)/e ~ —14/L%*, (30b)

Note that the data for (€11€22)(A) (A) do not scale nearly
as well as our other data. This is due to the fact that
the statistical errors are larger because the differences
which need to be taken to determine this correlation func-
tion are very small. For comparison, the Lamé constants
would be [24, 25]

p= A= 126¢/0? (31)

for a harmonic lattice with the current choice of interac-
tion parameters.

These data can be used to obtain various estimates for
the Poisson ratio. The results are shown in Fig. 4. The
fact that our data for the strain correlation functions all
scale with the same exponent implies that the scatter
of these estimates for op are of statistical origin. Our
best estimate is obtained using the results for (e11€11),
(€22€22), and (e12€;2). Because of the way we calculated

Ka, a; seems to systematically overestimate the true
value of the Poisson ratio for a given system size. How-
ever, these higher-order corrections vanish in the thermo-
dynamic limit, and it can be seen that all three estimates
for the Poisson ratio are converging for the larger system
sizes. We feel that op = —0.15 £ 0.01 is a conservative
estimate of the Poisson ratio in the infinite system size
limit. This is considerably smaller in magnitude than the
value predicted by the self-consistent screening approxi-
mation.

-0l T T 7T T T T T T T T T T T T

11 1

-0.12

T T rTT
1

|
©
-
w

T

[ B |

Poisson Ratio
|
e
-
'S

1
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|
1
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2
11

o YR 1 J T T Y R ‘“]’“Df"\“‘i“‘[”‘l";] L1
0.0 0.03 0.06 0.09 0.12
1/L

FIG. 4. Estimates for the Poisson ratio op = A/(A + 2pu).
Ug) = —(e11€22)/(€11€11) (0), Ug) = —1 4+ 2(e12€12) /{€11€11)
(+), and 0'533) = 1~ K4/[2(A)(e11€11)] (O) are plotted as
functions of 1/L, where L is the linear size of the membrane.
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For the current choice of algorithms and model pa-
rameters, extremely long runs were required to obtain an
accurate estimate for op. In fact, it can be seen that the
statistical errors are negligibly small only for the N = 100
particle system. For the NV = 196 particle network, aver-
ages were taken over 2.3 x 102 time steps when determin-
ing (€11€11), (€22€22), (€11€22), and K4, and 1.8 x 108 time
steps for (€12€12). Even for such long runs, there is still
a 1% difference between Ug) and ag). The correspond-
ing averages were taken over 3 x 10% and 2.5 x 108 time
steps for the N = 400 particle network, and 1.7 x 108
and 1.2 x 10® time steps for the N = 784 network. The
statistical errors are correspondingly larger.

V. DISCUSSION

Constant temperature-pressure MD methods have
been used to determine the scaling behavior and elas-
tic properties of tethered networks with periodic bound-
ary conditions. In contrast with earlier published results,
we find that the scaling behavior is consistent with the
most accurate previous simulation studies of tethered
networks. The in-plane elastic constants were also de-
termined from the strain correlations functions, and the
Poisson ratio was estimated to be op = —0.15 £ 0.01.
As expected, finite size effects are much smaller than in
studies of networks with free edges.

These simulations are not significantly more compli-
cated than those of networks with free edges. Although
both thermostating methods we employed yielded con-
sistent results, Nosé thermostating in conjunction with
a predictor-corrector integration scheme requires the use
of extremely small integration time steps, making these
simulations comparatively expensive. In contrast, the
use of the Verlet algorithm with constraint thermostat-
ing, as described in Sec. IT A, allowed us to use signif-
icantly larger time steps, without any loss of stability
or accuracy. Using heat-bath thermostating with the
velocity-Verlet algorithm for the same interaction po-
tentials and similar interaction parameters, it is possible

to use time steps At in the range 0.017-0.0127 [11, 12,
27]. Rather generally, the velocity-Verlet algorithm al-
lows the use of time steps a factor of 2 larger than for
one of the predictor-corrector algorithms [27]. With this
in mind, the most efficient procedure is probably to use
constraint thermostating with a Verlet algorithm. One
iterative method for implementing the Verlet algorithm
when there are velocity dependent forces is discussed in
Ref. [26].

We now have a very complete and consistent picture of
the thermal elastic and scaling behavior of tethered net-
works. Both the simulations described in this paper, as
well as simulations of tethered vesicles [11, 12] are con-
sistent with ¢ = 0.59 £ 0.02; this result is in excellent
agreement with the theoretical prediction of Le Doussal
and Radzihovsky [10]. Results for the scaling behavior of
the Lame constants presented in this paper are also con-
sistent with this result. However, if the shape of the sim-
ulation cell is kept fixed (as in the Andersen algorithm),
the strong supression of shear modes leads to large finite
size effects in the strain correlation functions, making it
impossible to determine the asymptotic scaling behav-
ior of the Lamé constants directly for reasonable system
sizes. In this context, it should be noted that we find the
same scaling behavior for the Lamé constants when the
original Parrinello-Rahman algorithm [20] is used instead
of the Cleveland-Wentzcovitch [18,19] algorithm. Utiliz-
ing algorithms of the type described in this paper, it is
possible to essentially eliminate edge effects and obtain
accurate direct estimates for the scaling behavior of both
the bending rigidity and in in-plane elastic constants.

ACKNOWLEDGMENTS

This work was supported in part by National Science
Foundation Center for Interfacial Engineering at the Uni-
versity of Minnesota, the National Science Foundation
under Grant Nos. DMR-9405824 and PHY94-07194, and
the donors of The Petroleum Research Fund, adminis-
tered by the ACS.

[1] Statistical Mechanics of Membranes and Surfaces, edited
by D. Nelson, T. Piran, and S. Weinberg (World Scien-
tific, Singapore, 1989).

[2] R.R. Chianelli, E.B. Prestridge, T.A. Pecoraro, and J.P.
DeNeufville, Science 203, 1105 (1979).

[3] A. Blumstein, R. Blumstein, and H.T. Vanderspurt, J.
Colloid Interface Sci. 31, 236 (1969).

[4] C.F. Schmidt et al, Science 259, 952 (1993); A. El-
gsaeter, B. Stokke, A. Mikkelsen, and D. Branton, zbid.
234, 1217 (1986).

[5] S.I. Stupp, S. Son, H.C. Lin, and L.S. Li, Science 259,
59 (1993).

[6] T. Hwa, E. Kokufuta, and T. Tanaka, Phys. Rev. A 44,
R2235 (1991); X. Wen, C. Garland, T. Hwa, M. Kardar,
E. Kokufuta, Y. Li, M. Orkisz, and T. Tanaka, Nature
355, 426 (1992).

[7] M.S. Spector, E. Naranjo, S. Chiruvolu, and J.A. Za-
sadzinski, Phys. Rev. Lett. 73, 2867 (1994).

(8] J.A. Aronovitz and T.C. Lubensky, Phys. Rev. Lett. 60,
2634 (1988); J.A. Aronovitz, L. Golubovic, and T.C.
Lubensky, J. Phys. (Paris) 50, 1787 (1989).

[9] F.F. Abraham, Phys. Rev. Lett. 67, 1669 (1991).

[10] P. Le Doussal and L. Radzhihovsky, Phys. Rev. Lett. 69,
1209 (1992).

[11] Z. Zhang, H.T. Davis, and D.M. Kroll, Phys. Rev. E 48,
R651 (1993).

[12] I.B. Petsche and G.S. Grest, J. Phys. (France) I 3, 1741
(1993).

[13] H.C. Andersen, J. Chem. Phys. 72, 2384 (1980).

[14] S. Nosé, Mol. Phys. 52, 255 (1984).

[15] W.G. Hoover, A.J.C. Ladd, and B. Moran, Phys. Rev.
Lett. 48, 1818 (1982).



53 MOLECULAR DYNAMICS SIMULATIONS OF TETHERED . . . 1429

[16] A.J.C. Ladd and W.G. Hoover, Phys. Rev. B 28, 1756
(1983).

[17] D.J. Evans, J. Chem. Phys. 78, 3297 (1983).

[18] C.L. Cleveland, J. Chem. Phys. 89, 4987 (1988).

[19] R.M. Wentzcovitch, Phys. Rev. B 44, 2358 (1991).

[20] M. Parrinello and A. Rahman, Phys. Rev. Lett. 45, 1196
(1980); J. Appl. Phys. 52, 7182 (1981).

[21] F.F. Abraham and D.R. Nelson, J. Phys. (France) 51,
2653 (1990).

2] D. Brown and J.H.R. Clarke, Mol. Phys. 51, 1243 (1984).
3] S. Nosé, J. Chem. Phys. 81, 511 (1984).

4] Y. Kantor and D. Nelson, Phys. Rev. A 36, 4020 (1987).
5] D.H. Boal, U. Seifert, and J.C. Shillcock, Phys. Rev. E

48, 4274 (1993).

[26] M. Ferrario and J.P. Ryckaert, Mol. Phys. 54, 587 (1985).
[27] K. Kremer, in Computer Simulation in Chemical Physics,
edited by M.P. Allen and D.J. Tildesley (Kluwer, Am-
sterdam, 1993), pp. 397-459.

2
2
2
2



